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On the superdeterminant function for supermatrices 

N B Backhouse and A G Fellourist 
Department of Applied Mathematics and Theoretical Physics, The University, PO Box 
147, Liverpool L69 3BX, UK 

Received 3 November 1983 

Abstract. A rigorous proof is given of the multiplicative property of the superdeterminant 
(Berezinian) of a supermatrix. The proof obviates the need to consider the domain of 
existence of the logarithm function for supermatrices, and devolves on the identity det( 1 - 
PQ) det(1- QP) = 1, where P and Q are compatible rectangular matrices over the odd 
part of a Grassmann algebra. 

1. Introduction 

An important construction in any supersymmetric field theory is that of invariant 
integrals on the underlying curved superspace or supermanifold. Arnowitt et al(1975) 
show that this required the concept of a superspace scalar density and a determinant 
function for the supermatrices of linear superspace transformations. This determinant 
function, subsequently called the superdeterminant, was independently discovered by 
Berezin and Leites (1975). Our principal aim in this paper is to prove rigorously that 
the superdeterminant is a multiplicative function, and in order to do this we need some 
basic results from the theory of Grassmann algebras. Let G, denote the Grassmann 
algebra on p < CO mutually anticommuting generators. Gp can be written as the direct 
sum of two subspaces G,,,O Gp,l, where G,,, (resp. Gp,l) is the even (resp. odd) part 
of G, and consists of all linear combinations of products of an even (resp. odd) 
number of generators. Gp,o contains the identity 1, regarded as the product of a zero 
number of generato’rs. The elements of Gp,o commute with the elements of Gp, whereas 
the elements of GP,* mutually anticommute. There is an alternative decomposition 
Gp = F 1 0  N,, where F is the field of scalars (i.e. the real or complex numbers) and 
Np consists of all linear combinations of a non-zero number of generators. We call 
F1 the numeric component of G, The elements of Np are nilpotent and have degree 
of nilpotency S p .  The invertible elements of G, are of the form f l  + n, where f # 0 
and n E Np, and constitute a subgroup G,* of G, 

These are the principal algebraic properties of Gp which we shall use. Proofs and 
further details can be found under the heading of Grassmann or exterior algebra in 
many standard text books on algebra-for example Mostow et a1 (1963). 

Rogers (1980) has shown that G, has a norm which gives it the structure of a 
Banach algebra and enables one to do analysis. Rogers (1980) further shows that p ,  
the cardinality of the set of generators, can also be taken to be that of the set of all 
integers. In that case G, consists of all those linear combinations of products, a finite 
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number of factors in each product, from a countable set of anticommuting generators, 
which have finite norm. G, is a Banach algebra which retains some, but not all, of 
the algebraic properties of G, for p < W. For example, the elements of G,,,, commute 
with all of G,, and the elements of G,,' mutually anticommute. In particular the 
elements of G,,' are nilpotent of degree two. In general, however, the elements of 
N, are not nilpotent in the algebraic sense-see Rogers (1980), lemma 2.7, for the 
sense in which the elements of N, are topologically nilpotent. 

A supermatrix over Gp p S a, of dimension ( m  + n) x ( m  + n) is a matrix of the form 

M = ( Y )  C D '  

where A (resp. D )  is an m X m (resp. n X n) matrix whose entries belong to Gp,o, and 
B (resp. C) is an m x n (resp. n x m) matrix whose entries belong to G,,'. The set of 
all such matrices form an associative algebra over F under the usual matrix addition 
and multiplication. It is known from the work of van Nieuwenhuizen (1981) and 
Ebner (1982) that M is invertible if and only if A and D are invertible, which is the 
case if and only if the matrices formed from the numeric components of the entries 
in A and D are invertible. Explicitly 

These two forms of M-' look different at first sight, but can easily be shown to be 
equivalent. 

There is a linear Gp,o-valued function on the set of all supermatrices, called the 
supertrace, and defined by 

str M = tr A- t r  0, (4) 

where the trace function is the usual sum of diagonal elements for a square matrix. 
This was first defined by Arnowitt er a1 (1975). 

There is another standard G,,o-valued function, called the superdeterminant or 
Berezinian, and defined by 

sdet M = (det A )  det-'(D- CA- 'B) ,  ( 5 )  

for invertible supermatrices. Gp,o is a commutative algebra, so the determinants 
appearing in ( 5 )  are well defined. 

It is the main purpose of this paper to provide a rigorous proof that the superdeter- 
minant is a multiplicative function. This property has been noted many times and 
subsequently assumed to be true, for example by Arnowitt et a1 (1975) and van 
Nieuwenhuizen (19811, who provide a proof which is only valid for a restricted class 
of supermatrices. It is worth saying that the superdeterminant is essential for the 
definition and study of a number of supergroups of great importance in supersym- 
metry-for example see Rittenberg (1978). We feel, therefore, that there is a need 
to tidy up this area of supermatrix theory. 
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The argument of Arnowitt et a1 (1975) and van Nieuwenhuizen (1981) that the 
superdeterminant is multiplicative is based on their alternative definition 

sdet M = exp(str In M ) ,  ( 6 )  
where In M is the natural logarithm of M. Our unease with a proof based on (6) is 
that, in contrast to the exponential, the logarithm is not a well defined function. This 
is so even for ordinary matrices, except in a neighbourhood of the identity where one 
can use a power series to define the logarithm and then prove that it is the inverse of 
the exponential. In this connection we may refer to Curtis (1979) for some comments 
on the logarithm of a matrix. 

Our proof is based directly on the definition ( 5 )  and makes use of the remarkable 
identity det(1 -PO) det( 1 - OP) = 1, where P and 0 are compatible rectangular 
matrices over GP,,. This identity is proved in 0 2 using the logarithm function, but in 
this case we are able to establish its existence rigorously. The application to the 
superdeterminant function is made in 0 3. 

2. The identity det(1-PQ) det(1-QP)=1 

We establish a number of preliminary lemmas. 

Lemma 1 .  Let K be an r X r matrix over Gp,o where entries are finite linear combina- 
tions of products of pairs of elements of Gp,l. Then In(1 - K )  is a well defined matrix 
over Gp,o and satisfies 

exp{ln( 1 - K ) }  = 1 - K .  (7) 

Proof. The restriction on the matrix entries implies that K is nilpotent even if p = CO. 

Then the matrix 

L = l n ( l - K ) =  - ( K + i K 2 + .  . .Kk- ' / (k-1) ) ,  

where K = 0, is well defined. Evidently, L itself is nilpotent of degree G k. Now 

exp{ln( 1 - x)} = 1 - x (9) 
is an identity in formal power series in the indeterminate x, where exp and In are given 
by the usual power series. It follows that 

exp L = 1 - K (10) 

is valid, where questions of convergence are avoided by noting that both K and L are 
nilpotent. 

Lemma 2. Let L be a matrix over Gp.o. Then 

det{exp L }  = exp{tr L} .  

Proof. In the special case that L is an r X r real or complex matrix, the equality (1 1) 
is a well known result from matrix algebra and can be proved by reduction to triangular 
form. For ordinary matrices (11) has two interpretations. On the one hand, if L is a 
particular matrix, det{exp L }  and exp{tr L} are scalars, which happen to be equal, 
obtained by summing absolutely convergent series. On the other hand, each side of 
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(11) can be regarded as a formal power series in indeterminates L,j, 1 S i, r, the 
matrix elements of L, and then (1 1) says that each side is a rearrangement of the other. 

Now let us suppose the Lgj  are particular elements of Gp,o and therefore subject 
to the usual additive and multiplicative rules of arithmetic. Both sides of (11) are 
absolutely convergent series, in this case within the Banach algebra Gp,o, which must 
coincide in value, because, as observed above, each is a rearrangement of the other. 

Lemma 3. Let P, Q be m x n and n x m matrices, respectively, over GP.,. Then 

tr(PQ)’ = -tr( QP)’, (12) 

for all integers s 3 1. 

Proof. The result for s = 1 is an easy consequence of the fact that elements of G , ,  
mutually anticommute. For s >  1 we have 

tr(PQ)’ = tr P{(QP)”-’Q}=-tr{(QP)”’Q}P=-tr(QP)’. 

Theorem 1. Let P, Q be m X n and n X m matrices, respectively, over GP,,. Then 

det( I - PO) det( I - QP) = 1. (13) 

Proof. We note that both PQ and QP satisfy the restrictions placed on the matrix K 
in lemma 1. Then, combining lemmas 1 and 2, we have 

det(I  - PQ) = exp{tr ln(1- P a ) )  = exp(-x), 

where 

x = tr(PQ) +$ tr(PQ)’+ * * +( 1/ (  k - 1))  tr(PQ)k-’, 

and 

det(1-QP)=exp(-y),  

where 

y = tr( QP) +$ tr(QP)’+. *+[1 / (  k - l)] tr( QP)k- ’ .  (15)  

In (14) and (15) k is the least integer for which both (PQ)k  and ( Q P ) k  are zero. It 
follows from lemma 3 that y = --x. Thus 

det(I-PQ) det(I-QP) =exp(-x) exp(x)=exp(-x+x)  =exp(O)= 1. (16) 

The deduction of (16) from the previous line is a particular case of a property of 
the absolutely convergent exponential series for commuting quantities, which is a 
fortiori valid for nilpotent arguments-for example see Curtis (1979). 

Corollary. If P is a square matrix over GP,,, 

det ( I -P2)  = 1. (17)  

Proof. Putting Q = P i n  theorem 1 we have [det( 1 - P’)]’ = 1. By expanding det(I-  P 2 )  
we see that its numeric part is 1. Thus det( I - P 2 )  # - 1. 



On the superdeterminant function 1393 

3. The superdeterminant 

To prove the multiplicative property of the superdeterminant, as defined by ( 5 ) ,  we 
first establish an alternative form. 

Lemma 4. 

sdet M =det(A-BD- 'C)  det(D-I), 

if M is invertible. 

Proof. By (5) 

sdet M = (det A)  det( D - CA-'B)-' 

= (det A )  det( 1 - CA-'BD-')-' det(D-'), 

using the multiplicative property of the ordinary determinant, 

= (det A )  det(1 -BD-'CA-') det(D-'), 

using theorem 1 applied to P = BD-' and Q = CA-', 

= det(A - BD-'C) det( D-I), 

noting that the values of the determinants lie in Gp,o and are therefore commuting 
numbers. 

The expression (1 8) is the form of the superdeterminant first used by Berezin and 
Leites (1975). It is worth noting that (18) is equivalent to sdet M=(sdet(M-I))- ' ,  
where we use (3)  as the form of M-'. We can now prove a special case of the main result. 

Lemma 5. Let M, M' ,  M" be invertible supermatrices of the form 

then 
(i) sdet M'M = (sdet M')(sdet M); 
(ii) sdet M"M = (sdet M")(sdet M) 

Proof. 
(i) By (5) we have 

sdet M' = (det A')(det D')-' 

and 

sdet M = (det A )  det( D - CA-'B)-'. 

Also 

MI,=( A'A 1 A'B ) 
C ' A + D ' C  C'B+D'D ' 
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so that 

sdet M‘M = (det A’A) det {C’B+D’D-(C’A+D’C)(A’A)- ’ (A’B)} - ’ ,  

= (det A’)(det A )  det(D’D-D’CA-’B)-’, 

= (sdet M’)(sdet M), 

as required. 
(ii) The proof is similar, except that we use the form (18) for the superdeterminant. 

Theorem 2. The superdeterminant is a multiplicative function on the group of invertible 
supermatrices. 

Proof. Let 

M=(?) C D ’  M ’ = ( $ $ )  

be invertible supermatrices. We can write M = XY, where 

Then 

sdet(MM’) =sdet(X( YM’)) 

= (sdet X) sdet YM’, 

using lemma 5(i) ,  

= (sdet X)(sdet Y)(sdet M’) ,  
using lemma 5(ii), 

= (sdet M)(sdet M’), 

as required. 

To conclude we prove a result for a special class of supermatrices noted by 
Rittenberg (1978). 

Theorem 3. Let M be an invertible supermatrix having the special form 

Then sdet M =  1. 

Proof. By definition 

sdet M = ( d e t  A)  det(A-BA-’B)-’ =det{l-(A-’B)2}-’ = 1, 

using the corollary to theorem 1. 
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